HEAT AND WATER TRANSFER FOR FRESHLY EXPOSED ROCK IN A
VENTILATED CLOSED-END WORKING
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Heat and water transfer are considered for an unbounded isotropic rock body
exposed to a ventilation jet of constant temperature. TFormulas are derived
that describe the distributions of the temperature and the water-transport po-—
tential in the rock. Equations are presented for the fluxes of heat and water
from the rock into the air.

Calculations on the temperatures in closed-end mineworkings have been performed by
reference to the heat transfer from the rock in a cavity of spherical form ventilated by air
at constant or variable temperatures [1,2]. However, many studies have shown that mines also
increase the humidity of the air because the rock dries out, and that the heat and mass trans-
fer processes have their highest rates in freshly cut rock, when most of the water enters the
air by evaporation from the walls.

In that case one can assume that the criterion for phase transformation in the rock is
close to zero (e & 0), and the differential equations for heat and mass transfer from the
rock to the air will take the following form [3]:
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We apply a Laplace——Cérson transformation [4] to (1) and (2):
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We get the system
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Substitution of (16) into (12) and (15) gives an equation whose solution is as follows
for the conditions of (13) and (15):
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Equations (16) and (17) are the transforms of the dimensionless temperature and water-
transport potential in the rock. A standard formula is [5]
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We apply this to (16) and (17) to get an analytic expression for the dimensionless tempera-
ture and water—transport potential:
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We further have the coefficients for the nonstationary heat and mass transfer [2]:
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Equations (25) and (26) give us the heat and water fluxes from
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which are used in calculating the parameters of the air flow in the closed end of the work-
ings. We show that one can obtain expressions for k; and m; for boundary conditions of the
first kind, i.e., t(Ro, T) = tc; for this purpose we pass to the limit in (10) and (25) and
(26), where Big > » is Big » =, which gives
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These equations allow us to calculate the heat and mass fluxes from the rock into the
air in the ventilation of a closed-end working with rapid evaporation from the walls.

NOTATION

R, spherical coordinate; Ro, radius of spherical end; t(r, T), 8(r, T), temperature and
water—transfer potential; tg, tc, temperature of the uncooled rocks and cooling jet, respec-—
tively; 64, 6o, water-transfer potential and equilibrium value; cq, cT, specific heat and
water capacity, respectively; aq, thermal diffusivity; an, water transport coefficient; A,
dm, thermal conductivity and water conductivity, respectively; §, thermogradient coefficient;
erf x, probability integral.
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THERMOELASTICITY OF NONHOMOGENEOUS MEDIA

Yu. M. Kolyano and E. I. Shter UbC 539.3

A system of equations is derived for the coupled thermoelasticity of an aniso-
tropic nonhomogeneous body, taking into account the generalized law of heat con-
duction, by the method of systems identification and with the aid of the
Clausius—Duhem inequality.

In view of the extensive use of composite materials in various branches of technology,
it becomes very important to study the properties of nonhomogeneous media.

The process of heat propagation through a nonhomogeneous medium will be simulated as
follows: A system with the tramsfer function Gjj(xg), representing an anisotropic nonhomo-
geneous medium, receives a temperature gradient Vt at the input and transmits a thermal flux
§ as its output signal. The output d of a linear process with the input Vt is determined as
the convolution integral ‘
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We introduce the notation Z = qj and Y = Vt. We then define the correlation function gy
which describes the coupling between quantities Z and Y
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We analogously define the autocorrelation function @yy as the average product of the value of
signal Y(xg, 1) and its value at time (T — T3)
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We will consider an input function Y of the "white noise” kind, whose autocorrelation func-—
tion is a delta function. A preliminary transformation of function (3) with relation (1)
taken into account yields

Poy (Xss Ta) = Gy (Xsr Ta)- (5)

With the aid of relation (5), relation (2) transforms to
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